DNA topoisomerase I inhibition by camptothecin induces escape of RNA polymerase II from promoter-proximal pause site, antisense transcription and histone acetylation at the human HIF-1α gene locus
نویسندگان
چکیده
Top1 inhibition by camptothecin (CPT) perturbs RNA polymerase II (Pol II) density at promoters and along transcribed genes suggesting an involvement of Top1 in Pol II pausing. Here, we demonstrate that Top1 inhibition favors Pol II escape from a promoter-proximal pausing site of the human HIF-1alpha gene in living cells. Interestingly, alternative splicing at exon 11 was markedly altered in nascent HIF-1alpha mRNAs, and chromatin structure was also affected with enhanced histone acetylation and reduced nucleosome density in a manner dependent on cdk activity. Moreover, CPT increases transcription of a novel long RNA (5'aHIF1alpha), antisense to human HIF-1alpha mRNA, and a known antisense RNA at the 3'-end of the gene, while decreasing mRNA levels under normoxic and hypoxic conditions. The effects require Top1, but are independent from Top1-induced replicative DNA damage. Chromatin RNA immunoprecipitation results showed that CPT can activate antisense transcription mediated by cyclin-dependent kinase (cdk) activity. Thus, Top1 inhibition can trigger a transcriptional stress, involving antisense transcription and increased chromatin accessibility, which is dependent on cdk activity and deregulated Pol II pausing. A changed balance of antisense transcripts and mRNAs may then lead to altered regulation of HIF-1alpha activity in human cancer cells.
منابع مشابه
DNA topoisomerase I inhibition by camptothecin induces escape of RNA polymerase II from promoter-proximal pause site, antisense transcription and histone acetylation at the human HIF-1a gene locus
Top1 inhibition by camptothecin (CPT) perturbs RNA polymerase II (Pol II) density at promoters and along transcribed genes suggesting an involvement of Top1 in Pol II pausing. Here, we demonstrate that Top1 inhibition favors Pol II escape from a promoter-proximal pausing site of the human HIF-1a gene in living cells. Interestingly, alternative splicing at exon 11 was markedly altered in nascent...
متن کاملDNA topoisomerase I inhibition by camptothecin induces escape of RNA polymerase II from promoter-proximal pause site, antisense transcription and histone acetylation at the 5 human HIF-1a gene locus
Top1 inhibition by camptothecin (CPT) perturbs RNA polymerase II (Pol II) density at promoters and along transcribed genes suggesting an involvement of Top1 in Pol II pausing. Here, we demonstrate that Top1 inhibition favors Pol II escape from a promoter-proximal pausing site of the human HIF-1a gene in living cells. Interestingly, alternative splicing at exon 11 was markedly altered in nascent...
متن کاملThe anti-cancer drug camptothecin inhibits elongation but stimulates initiation of RNA polymerase II transcription.
Camptothecin is a widely used anti-tumor drug that specifically inhibits DNA topoisomerase I. It is believed that topoisomerase I participates in the process of transcription by relaxing torsional stress induced in the duplex DNA by the elongating RNA polymerase. We have assessed the effects of camptothecin on RNA polymerase II transcription from the dihydrofolate reductase (DHFR) gene in Chine...
متن کاملAn insulator blocks spreading of histone acetylation and interferes with RNA polymerase II transfer between an enhancer and gene.
We studied the mechanism by which an insulator interrupts enhancer signaling to a gene using stably replicated chromatin templates containing the human beta-globin locus control region HS2 enhancer and a target globin gene. The chicken beta-globin 5' HS4 (cHS4) insulator acted as a positional enhancer blocker, inhibiting promoter remodeling and transcription activation only when placed between ...
متن کاملRNA polymerase I transcription silences noncoding RNAs at the ribosomal DNA locus in Saccharomyces cerevisiae.
In Saccharomyces cerevisiae the repeated units of the ribosomal locus, transcribed by RNA polymerase I (Pol I), are interrupted by nontranscribed spacers (NTSs). These NTS regions are transcribed by RNA polymerase III to synthesize 5S RNA and by RNA polymerase II (Pol II) to synthesize, at low levels, noncoding RNAs (ncRNAs). While transcription of both RNA polymerase I and III is highly charac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 38 شماره
صفحات -
تاریخ انتشار 2010